Coupling heterogeneous multiscale FEM with Runge-Kutta methods for parabolic homogenization problems: a fully discrete space-time analysis

نویسندگان

  • Assyr Abdulle
  • Gilles Vilmart
چکیده

Numerical methods for parabolic homogenization problems combining finite element methods (FEMs) in space with Runge-Kutta methods in time are proposed. The space discretization is based on the coupling of macro and micro finite element methods following the framework of the Heterogeneous Multiscale Method (HMM). We present a fully-discrete analysis in both space and time. Our analysis relies on new (optimal) error bounds in the norms L(H), C0(L2), and C0(H1) for the fully discrete analysis in space. These bounds can then be used to derive fully discrete space-time error estimates for a variety of Runge-Kutta methods, including implicit methods (e.g., Radau methods) and explicit stabilized method (e.g., Chebyshev methods). Numerical experiments confirm our theoretical convergence rates and illustrate the performance of the methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical homogenization methods for parabolic monotone problems

In this paper we review various numerical homogenization methods for monotone parabolic problems with multiple scales. The spatial discretisation is based on finite element methods and the multiscale strategy relies on the heterogeneous multiscale method. The time discretization is performed by several classes of Runge-Kutta methods (strongly A−stable or explicit stabilized methods). We discuss...

متن کامل

On Runge-Kutta Methods for Parabolic Problems with Time-Dependent Coefficients

Galerkin fully discrete approximations for parabolic equations with time-dependent coefficients are analyzed. The schemes are based on implicit Runge-Kutta methods, and are coupled with preconditioned iterative methods to approximately solve the resulting systems of linear equations. It is shown that for certain classes of Runge-Kutta methods, the fully discrete equations exhibit parallel featu...

متن کامل

Linearized Numerical Homogenization Method for Nonlinear Monotone Parabolic Multiscale Problems

We introduce and analyze an efficient numerical homogenization method for a class of nonlinear parabolic problems of monotone type in highly oscillatory media. The new scheme avoids costly Newton iterations and is linear at both the macroscopic and the microscopic scales. It can be interpreted as a linearized version of a standard nonlinear homogenization method. We prove the stability of the m...

متن کامل

On A Priori Error Analysis of Fully Discrete Heterogeneous Multiscale FEM

Heterogeneous multiscale methods have been introduced by E and Engquist [Commun. Math. Sci., 1 (2003), pp. 87–132] as a methodology for the numerical computation of problems with multiple scales. Analyses of the methods for various homogenization problems have been done by several authors. These results were obtained under the assumption that the microscopic models (the cell problems in the hom...

متن کامل

Runge-kutta Methods and Local Uniform Grid Refinement

Local uniform grid refinement (LUGR) is an adaptive grid technique for computing solutions of partial differential equations possessing sharp spatial transitions. Using nested, finer-and-finer uniform subgrids, the LUGR technique refines the space grid locally around these transitions, so as to avoid discretization on a very fine grid covering the entire physical domain. This paper examines the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012